Clinical Validity: Prenatal Screening for Cystic Fibrosis

Sue Richards, PhD
Professor, Molecular & Medical Genetics
Director, DNA Diagnostic Laboratory
Oregon Health & Science University

Clinical Validity

- Defines the ability of a test to detect or predict the phenotype or particular clinical outcome
- Elements build upon analysis of analytic validity for a specific disorder in a defined setting

Clinical Sensitivity & Specificity

Disease Phenotype

Test Result

	Yes	No
Pos	Α	В
Neg	С	D

Sensitivity: Proportion of persons with the disease who have a positive test = A / (A+C)

Specificity: Proportion of persons who do not have the disease who have a negative test = D / (B+D)

Issues in evaluating Clinical Validity

- Study design
 - Case definitions may vary
 - Small numbers and potential biases
 - Populations may need to be stratified by variables such as gender, age, race/ethnicity
 - Testing protocols may not be comparable (e.g., numbers of mutations tested)
 - Comparability of case and control populations
- Need to evaluate the impact of genetic and environmental modifiers

Clinical Sensitivity of *CFTR* Testing: Prenatal Screening for Cystic Fibrosis

- Clinical sensitivity is dependent on the panel of CFTR mutations selected
 - This review will focus on the ACMG recommended panel of 25 mutations
- Clinical sensitivity is dependent of the race/ethnicity of the population screened
 - This review will provide estimates for self-reported race/ethnic groups (i.e., Hispanic and non-Hispanic Caucasians, Ashkenazi Jewish, African Americans and Asian Americans)
- Clinical sensitivity is not dependent on the screening model used
 - Sequential (two-step), couple (one-step) and concurrent

American College of Medical Genetics (ACMG) Recommended Panel of 25 CFTR Mutations

- 7 mutations often tested in 7-13 pilot trials
 - delF508, G551D, G542X, 621+1G>T, W1282X, N1303K, and R553X
- 7 mutations sometimes tested (2 to 6 trials)
 - dell507, 1717+1G>T, R117H, 3849+10kbC>T, R560T, A455E, R334W
- 11 mutations rarely or never tested (0 or 1)
 - R347P, 711+1G>T, R1162X, I148T, 2789+5G>A, 3569delC, G85E, 2184delA, 1898+1G>A, 3120+1G>T, 1078delT

To Reliably Estimate Clinical Sensitivity Requires

- An unbiased set of DNA samples from individuals with clinically defined 'classic' cystic fibrosis
- A set test panel of CFTR mutations
- Two large datasets are available:
 - The Cystic Fibrosis Consortium (diagnostic laboratories)
 - The Cystic Fibrosis Foundation (clinics providing patient care)

An ACCE Review Involves a Critical Evaluation of the Literature

- The CF Consortium (Kazazian et al., 1994) reported mutation frequencies in North Americans (Caucasians). However, those numbers could not be used directly for two reasons:
 - This group includes reports that focus mainly on Hispanic Caucasians, Ashkenazi Jewish or African Americans
 - There was a computational error that underestimated mutation frequencies, especially for those less common

Cystic Fibrosis Consortium Reanalysis

Mutation Frequency (%)

Mutation	Original	Revised*
delF508	66.1	68.94
G542X	2.2	2.17
G551D	2.0	2.06
621+1G>T	1.5	1.91
?? Others	7.4	8.20
A455E	0.25	0.54
711+1G>T	0.20	0.77
R347P	0.25	0.46
All	79.9	85.05

^{*}After removing 15 reports and using a new denominator

Mutation Frequencies in Non-Hispanic Caucasians

Mutation	CF Consort	CF Found	Average	Cumulative
delF508	68.94	75.90	72.42	72.42
G542X	2.17	2.39	2.28	74.70
G551D	2.05	2.44	2.25	76.95
621+1G>T	1.92	1.22	1.57	78.52
W1282X	1.42	1.57	1.50	80.02
20 others	8.55	8.12	8.33	<u>88.35</u>
Total	85.05	91.64	88.35	

CF Consortium based on between 2,197 and 9,792 chromosomes CF Foundation based on 3,938 chromosomes

Which Set of Mutation Frequencies Should be Used?

- The Cystic Fibrosis Consortium data may under-represent 'common' mutations such as delF508 because of the 'reference' nature of participating laboratories
- The Cystic Fibrosis Foundation data may over-estimate the more 'severe' mutations such as delF508, because they are more likely to be enrolled for services
- The average of the two may be reasonable to use

Relationship Between Carriers Identified & Detection of Carrier Couples (or Affected Fetuses)

Proportion Identified (%)

Carrier Individuals	Carrier Couples	Increase*
20	4	
30	9	5
40	16	7
50	25	9
60	36	11
70	49	13
80	64	15
90	81	17
95	90	9

^{*} Increase in detection for 10% increase carriers identified

Carrier Couples Detected (Clinical Sensitivity) Among Non-Hispanic Caucasians

Clinical Sensitivity in Other Racial/Ethnic Groups

- Similar analyses are performed for individuals reported to be
 - Hispanic Caucasians
 - Ashkenazi Jewish
 - African American
 - Asian American

Clinical Sensitivity of Prenatal Cystic Fibrosis Screening by Race/Ethnicity

Clinical Specificity of Prenatal Screening for Cystic Fibrosis

- Analytic false positive results
 - Pre analytic
 - Sample mix-up prior to laboratory receipt
 - Degraded or mishandled sample
 - Non-paternity
 - Analytic
 - Sample mix-up after laboratory receipt
 - Benign polymorphism mistaken for a mutation
 - Post analytic
 - Data entry error
 - Incorrect laboratory interpretation
 - Report mix-up at the laboratory or provider site

Clinical Specificity of Prenatal Screening for Cystic Fibrosis

- Clinical false positive results
 - Incomplete penetrance
 - Can be minimized, but not eliminated, by reflexive testing associated with R117H and I148T (D1152H is not on the panel but is likely to be of low penetrance as well)
 - A small proportion (up to 5%?) of individuals with two mutations will not have the 'classic' CF phenotype
 - Mutation is not disease-causing
 - Possible that I148T is a polymorphism that is tightly linked to a 'real' mutation

The Birth Prevalence of Cystic Fibrosis by Race/Ethnicity

- Sources of data include:
 - prenatal (pre) screening trials
 - newborn (new) screening trials
 - population (pop) registries
- Identified biases include:
 - number of mutations tested (pre, new)
 - race/ethnicity not accounted for (pre, new, pop)
 - prenatal screening and termination (new, pop)
 - length of follow-up (new, pop)
 - other study-specific biases (pre, new, pop)

ACCE Methodology Attempts to Account for Biases Rather than Excluding Studies

- Number of mutations tested, and proportion of cases detected by race/ethnicity can be taken into account by using the race/ethnic specific mutation rates described earlier
- Several studies provide the relative rates of prenatal screening and termination that occurs in concert with newborn screening (Europe / Australia)
- The proportion of cases detected during reported follow-up can be adjusted using age at diagnosis information from the CF Foundation

Adjusted Prevalence of CF in non-Hispanic Caucasians Using Prenatal Screening Trials

Prevalence of Cystic Fibrosis in non-Hispanic Caucasians Using Newborn Screening Trials

Newborn Study Number

Prevalence of Cystic Fibrosis in non-Hispanic Caucasians Using Population Registries

Summary: Birth Prevalence of Cystic Fibrosis in Selected Racial/Ethnic Groups

		Prevalence
Racial/Ethnic Group	Studies	(1:n)
Ashkenazi Jewish	4	2,271
Non-Hispanic Caucasians	33	2,500
Hispanic Caucasians	3	13,500
African Americans	3	15,100
Asian Americans	1	31,000

Genotype/Phenotype Relationships

- 'Classic' cystic fibrosis phenotype occurs about 98% of the time when two mutations in the recommended mutation panel are identified.
- Most mutations associated with pulmonary disease, but cannot accurately predict timing of onset & progression.
- Pancreatic insufficiency in most cystic fibrosis patients, but 5 to 15% have pancreatic function. Certain less common mutations are associated with pancreatic sufficiency.
- Screening is expected to generate more information.

Acknowledgements

- ACCE Review: Population-based prenatal screening for cystic fibrosis via carrier testing (available on the CDC website)
- ACCE Core Group
- Slides provided by:
 Glenn Palomaki & Linda Bradley